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Random Walks on Periodic and Random Lattices. II. 
Random Walk Properties via Generating Function 
Techniques 
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We investigate the random walk properties of a class of two-dimensional 
lattices with two different types of columns and discuss the dependence of 
the properties on the densities and detailed arrangements of the columns. 
We show that the row and column components of the mean square dis- 
placement are asymptotically independent of the details of the arrangement 
of columns. We reach the same conclusion for some other random walk 
properties (return to the origin and number of distinct sites visited) for 
various periodic arrangements of a given relative density of the two types 
of columns. We also derive exact asymptotic results for the occupation 
probabilities of the two types of distinct sites on our lattices which validate 
the basic conjecture on bond and step ratios made in the preceding paper 
in this series. 

KEY WORDS: Random walks; periodic lattices; random lattices; 
generating function techniques. 

1. I N T R O D U C T I O N  

This is the third in a series of papers on r andom walks in a class of  lattices 
that  might  serve as models for the study of  t ranspor t  properties in a variety 

of  anisotropic and  disordered systems. We consider two-dimensional  lattices 
in which the t ransi t ion probabil i t ies may be different for sites lying in 

different columns.  A special case of our  model, already analyzed in detail in 

Refs. 1 and  2 (hereafter referred to as A and  B) is one in which the walker 
can always step to nearest ne ighbor  sites in any row but  can step to nearest 
neighbor  sites in a co lumn only for certain specified columns.  In  this paper we 
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allow the walker to step vertically as well as horizontally on any column, but 
we distinguish between two types of columns. The details of this distinction 
are described in Section 2. 

There are three important questions that arise when one considers these 
two-dimensional lattices: 

1. For a given spatial arrangement of  the two types of columns, what is 
the dependence of random walk properties on the relative density of 
the columns and the detailed characteristics of  each type of column ? 

2. For  a given relative density of  the two types of columns, how do 
random walk properties depend on the detailed arrangement of the 
columns ? 

3. Is it possible to define an anisotropic, translationally invariant lattice 
for which certain random walk properties of physical interest are 
identical to those of the lattices we consider? 

The specific random walk properties that we consider in answering these 
questions are the mean square displacement, the probability of  return to the 
origin, and the distinct number of sites visited, in n steps. The first of these 
is treated in Section 3. For this property we are able to answer the questions 
posed above completely because we are able to calculate the mean square 
displacement for any arrangement of  columns. For the probability of return 
to the origin and the distinct number of  sites visited we provide a partial 
answer to the questions posed. This is done in Section 4. We conclude in 
Section 5 with a result for the asymptotic behavior of  the random walk that 
provides a simple interpretation for some of the results obtained here and for 
some conjectures made in B. 

2, T H E  M O D E L  

Consider a random walker on a two-dimensional lattice of  q rows and 
m columns with N = mq sites. In this lattice we distinguish between lattice 
points that lie on " s t r ong"  columns (indicated by a double vertical line in 
Fig. 1) and those that lie on " w e a k "  columns (indicated by a single vertical 
line on Fig. 1). From a lattice point lying on a weak column, the walker can 
step with probability Pl to either nearest neighbor in the horizontal direction 
and with probabilityp2 to each vertical nearest neighbor, with 2p~ + 2p2 = 1. 
From a lattice point lying on a strong column, the nearest neighbor transition 
probabilities are px - e and P2 + E in the horizontal and vertical directions, 
respectively. These transition probabilities are shown in Fig. 1. An isotropic, 
translationally invariant, two-dimensional lattice is recovered if we set E = 0 
and p~ = P2 -- �88 The " spa r se"  lattices considered in A and B correspond 
to the choice P2 = 0 and thus pl  = �89 We shall indicate the density of  strong 
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Fig. 1. Section of a two-dimensional lattice 
with weak (single line) and strong (double 
line) columns. The transition probabilities at 
a typical lattice point on each type of column 
are indicated. 

Pz 

P2+~ 

P2+r 

columns by ~; e.g., if there is one strong column for every k - 1 weak 
columns, then c~ - 1/k. 

In this paper we will consider three types of  arrangements of  strong and 
weak columns. In the simplest arrangement, which we call "singly periodic," 
every kth column is strong and the other columns are weak. This arrangement 
is illustrated in Fig. 2a. In the "c lumped periodic" arrangement there are r 
adjacent strong columns followed by (k - 1)r weak columns, so that the 
density of  strong columns is still ~. This arrangement is shown in Fig. 2b. 
The third arrangement consists of  a random distribution of strong columns 
among the weak columns in such a way that the density of the former is 
still ~. 

3.  M E A N  S Q U A R E  D I S P L A C E M E N T  

One of the important measures of  the anisotropy of transport  properties 
in our periodic and random lattices is the difference in the mean square 
displacements along the rows (x direction) and the columns (y direction). 
We denote the mean square displacement in the x direction after n steps by 
(x ,  2) and in the y direction by (yn2). In this section we derive explicit 
asymptotic (large-n) expressions for (x ,  ~) and for the total mean square 
displacement (x= 2) + ( y 2 )  from which ( y 2 )  can then be readily obtained. 

Regardless of  the arrangement and density ~ of the strong columns and 
the relative strengths of  the columns, the total mean square displacement for 
symmetric nearest neighbor walks is given by 

<&=) _-- <x.=) + (y~=> = n (3.~) 
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To show this, we begin with the-equation satisfied by the probabili ty P.(I]lo) 
that  the walker is at site l after n steps, having started at site lo, 

P.(lilo) = ~ a(l, l ')P._l(l 'llo) (3.2) 
l" 

Here a(l, l') is the transition probabil i ty from site l '  to site I in one step. 
For  the walks considered here, a(l, l') is nonzero only for ]l - l'[ = 1, The 
mean square displacement is 

(l ,  2) = ~ ( I -  lo)2P~(l]lo) (3.3) 
l 

To  obtain an equat ion for it we multiply (3.2) by (l - Io) 2 and sum over l. 
This gives 

( l ,  z) = ~ ~, (l - lo)2a(1, I')P,_ 1(l'[10) (3.4) 

On the right side of  (3.4) we write ( 1 -  1o) 2 as ( l -  l ') 2 + (I' - 10) 2 + 
2(l - l ' ) .  (l '  - lo). The  first term yields 

~z, ( l -  l')2a(l, l ' )e,_l(l ' t lo) = ~v, P,-l(l ']lo) = 1  (3.5) 

The  third term gives 

2 ~ ~ (l - l ' ) . ( l '  - lo)a(l, l ')P._l(l 'llo) = 0 (3.6) 
l V 

where we have used the fact that  for  a symmetric walk ~ (l - l')a(I, l') = O. 
The  second term gives 

z ~, (l' - lo)2a(l, l')P,_~(Z'llo ) = ~z, (l' - lo)2P,_~(l']lo) = (l~_~) (3.7) 

Collecting (3.5)-(3.7) in (3.4) leads to 

(Z, z) = 1 + (l~_~) (3.8) 

and since ( l l  2) = 1, we immediately obtain (3.1) as the solution of  the above 
difference equation. 

It  is of  great interest to determine whether the components (x ,2)  and 
( y 2 )  of  the mean square displacement depend on the detailed arrangement  
of  strong and weak columns or whether  it is only their density that  matters. 
In B it was conjectured that  the density of  strong columns completely deter- 
mines the asymptotic  behavior of  ( x ,  2) and ( y 2 ) .  We here prove this 
conjecture to be correct.  

In A it was shown that  an equivalence between the asymptotic behavior 
of  the components  of  the mean square displacement of  a sparsely periodic 
lattice and an anisotropic,  translationally invariant lattice can be established. 
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2p 2 Zp~*zE 
x < • 0 x ( 0 ) ~ ..... 

PI PI Pl -~ P~-~ 

Fig. 3. A section of a two-dimensional lattice with weak and strong columns and its 
projection onto a one-dimensional lattice. A x denotes a weak partial trap with stepping 
probabilities Pl and pausing probability 2p2. A circle denotes a strong partial trap with 
stepping probabilities Pl - e and pausing probability 2p2 + 2e. The pausing prob- 
abilities for the projected random walk correspond to the column stepping probabilities 
for the random walk on the two-dimensional lattice. 

We here generalize this result in two ways. We consider a more general class 
of  lattices than those considered in A and we make this identification for 
lattices with random as well as periodic distributions of  strong columns. 

As discussed in A for the sparsely periodic lattice, the projection of the 
two-dimensional walk on the x axis is a symmetric, one-dimensional random 
walk with "part ia l  traps." By "part ia l  t raps"  we mean sites at which the 
walker can pause with a finite probability at every step. In the lattices we 
consider here, the pausing probabilities at the partial traps (which we shall 
call their strengths) and their location depend on the distribution of  weak 
and strong columns in the original two-dimensional lattice. This is illustrated 
in Fig. 3. 

3.1.  S i n g l y  P e r i o d i c  D i s t r i b u t i o n  o f  S t r o n g  C o l u m n s  

Consider the two-dimensional lattice in which every kth vertical column 
is strong and the other columns are weak (see Fig. 2a). The corresponding 
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one-dimensional system has a strong partial trap every k sites and weak 
partial traps at all other sites. Since the distribution of strong partial traps 
is periodic, the overall system is periodic and one can find the mean square 
displacement ( x ,  2) using standard Fourier transform and defect tech- 
niques, n,a,4) The calculation is carried out in Appendix A and the asymptotic 
(large-n) results are 

( x ~ )  ,,~ 2pl 
1 + a~/(Pz - ~)n (3.9a) 

~ 1 + a e / ( p l -  e) n (3.9b) 

independent of initial condition, where ( y 2 )  is obtained from (3.9a) and 
(3.1). Note that these results reduce to those of B when Pl = �89 and P2 = 0 
and to those of A when one further sets e = �88 

It is instructive to compare (3.9) to the corresponding mean square 
displacement results for a translationally invariant, anisotropic, two-dimen- 
sional lattice, i.e., a lattice in which all sites are identical but the probabilities 
of stepping in the i x  direction (Pl') and in the +_y direction (P2') are 
different (Pz' r P2'). For such a lattice one readily obtains asymptotically 

(x,~ 2) ,-, [p~'/(p~' + pff)]n (3.10a) 

( y  2) ,,~ [Pff/(Pl '  + p2')]n (3.10b) 

The results (3.10) for the translationally invariant lattice and (3.9) for our 
periodically disordered lattice are identical if we make the identifications 

, Pl  (3.11 a) 
P~ = 1 + ~/(p~ - ~) 

P2' = P2 + ~e/2(pz - E) 
1 + ,xel(pl - ,) (3.11b) 

We will show later that with this same identification, other random walk 
properties are also identical for the periodically disordered and the trans- 
lationally invariant anisotropic lattices. 

3,2. Random Distr ibut ion of Strong Columns 

We now treat a two-dimensional lattice in which the strong columns are 
distributed at random with a density a, i.e., on the average one out of every 
k columns is strong. The corresponding (projected) one-dimensional system 
has a density ~ of strong partial traps which are randomly distributed, and a 
density 1 - a of weak partial traps. Since this system is not periodic, standard 
Fourier transform methods cannot be applied in any simple way to find the 
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mean square displacement of a walker on this system. We thus proceed in a 
somewhat different manner. The probability that the walker is at site l after 
n steps, having started the walk at site 10, satisfies the equation 

where 

P,(lllo ) = ~v p(l, l')P,,_~(l'Ilo ) + ~, q(l, l ')P,_,(l 'Ilo ) (3.12) 

p(l, l') = Pl 8,• + 2p= 8,.v (3.13a) 

q(l, I') = ~ ~ {28v&a,.v - 8v.,,8,+1.,. - 8v.t,Sz_Lv } (3.13b) 
zj 

Here p(l, l') is the transition probability from site l '  to site l in a regular 
one-dimensional lattice in which the probability of stepping to a nearest 
neighbor is Pl and the probability of remaining at a site is 2p~. The defect 
matrix q(l, l') represents the modification in the transition probabilities due 
to the strong partial traps. At these sites, denoted by {lj}, the transition 
probability to nearest neighboring sites is [p(lj + 1, lj) + q(lj + 1,/j)] = 
P x -  e and the probability [p(lj, l j )+  q(lj,/#)] of remaining at site lj is 
2p2 + 2E. 

We define the generating function ~3> for our random one-dimensional 
lattice as 

G~,(z) = ~ z'~Pn(IIl ') (3.14) 
n = 0  

The equation satisfied by this generating function is found from (3.12) by 
multiplying by z" and summing o v e r  n :  

a,,o(~ ) = ~ [p(l, l') + q(t, V)]G,.,o(Z) + 3,., o (3.15) 
l" 

The generating function Guo(z) can be expressed in terms of the generating 
function Uz~o(Z) of the regular (E = 0) lattice as 

G,o(Z) = U,,o(Z) + z ~  Vw(z)Fz%(z) (3.16) 
l '  

where 

and 

= f(1 - 2zp2)-  [(1 - 2zp2) = - (2zpz)~J1/2"~,,-,q 
2zp, ) 

x [(1 - 2zp=) = - (2zp,)=] -*/` (3.17) 

Fv~o(z) = ~ q(/',/")Gv%(z) (3.18) 
l "  
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We introduce the Fourier transform fzo(4, z) of an arbitrary function fno(z) 
by the definition 

flo(~, z) =- 2 fizo(Z)ei(Z-z~ (3.19) 
l =  - - o 0  

The Fourier transform of Eq. (3.16) then is 

r z) = O~o(6, z) + z E e'(Z-l~ ~ Uw(z)Fv'o (z) (3.20) 
l l '  

The generating function for the mean square displacement as defined in Eq. 
(AS) of Appendix A is then given by 

82 
x(z)  = - ~--~ 8~o(~, z)r~:0 (3.21) 

and the mean square displacement (x ,  2) -= ( l ,  2) is the coefficient of z" in 
the expansion of X(z) in powers of z. 

In Appendix A we point out that for large n the main contribution to 
( x ,  2) comes from the coefficient of 1/(1 - z) 2 in an expansion of X(z) in 
powers of (1 - z). To obtain the asymptotic mean square displacement it is 
thus sufficient to evaluate (3.21) explicitly to order (1 - z ) -L  From (3.17) 
it can directly be seen that the contribution of the regular lattice portion of 
(3.20) to (3.21) is 

82 2pl 
8f52 O~o(qS, z)[~,=o - (1 --- z) 2 + O(1 - z) -1 (3.22) 

The contribution due to the strong partial traps can be expressed as 

8 2 2~z 
-8~  --'-~ z ~, e~(l-z~ ~z, Uu'(z)Fvl~176 = 1 ~ z ~ GzJ'~ (3.23) 

The sum ~zj Gtjzo(Z) is considered in detail in Appendix B. We there obtain 
the result 

6~J~~ = (1 - z)[k(pl - E) + e] + O(1) (3.24) 

Combining the results of (3.20)-(3.24) finally yields 

1 2p~ 
X(z) = (1 - z) 2 1 + ~,(pl - e)- i  + O(1 - z) -1 (3.25) 

Using Darboux's theorem, (5~ we then obtain 

2p~ (3.26) <x"~> ~ 1 + ~ , / ( p ~  - , ) n  

Equation (3.26) is identical to Eq. (3.9a). We have thus established the 
important result that the asymptotic mean square displacements in the x and y 
directions are independent of the arrangement of strong and weak connections 
and depend only on their density. 
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4. P R O B A B I L I T Y  OF R E T U R N  TO THE O R I G I N  A N D  
N U M B E R  OF D I S T I N C T  SITES V I S I T E D  

Two properties that are of  interest in random walk models are the 
probability Pn(lo[lo) of return to the origin lo in n steps and the number S, 
of distinct sites visited in n steps. The former is closely related to a quantity 
that is of considerable experimental interest in the study of disordered 
materials, namely, the probability for an excitation or electron originally 
located at site lo to be at the site at a later time t. (6) The second property, S~, 
is of experimental interest in problems involving traps, since in some cases 
time-dependent trapping probabilities can be related to Sn.(v) 

It is clearly of interest to determine the dependence of these properties 
on the arrangements of weak and strong columns. For this purpose it would 
be desirable to obtain P,(lo[lo) and S~ for arbitrary arrangements. Unfor- 
tunately, we have been unable to carry out analytic calculations for random 
arrangements of strong columns. We have, however, been able to obtain 
results for a variety of periodic arrangements of  columns. These results are 
generalizations of those obtained in A. We find that for a particular class of 
periodic arrangements the properties P~(lollo) and S~ in fact do not depend on 
the details of the arrangements but depend only on the density of strong and 
weak columns. This is in accord with the conjecture made in B. The further 
conjecture made there, that this independence of the details of the arrange- 
ments also holds for random ones, must remain a conjecture at this time. 

We shall also show that one can identify an anisotropic, translationally 
invariant lattice with each lattice considered here in such a way that the 
P,(lo[lo) as well as the Sn for both these lattices are asymptotically identical. 
Furthermore, this identification is the same as that made via the components 
of the mean square displacement in Section 3. 

It should be noted that if one could produce a proof  for the conjecture 
made in B that P~(loIlo) and S~ only depend on the density ~ of  strong columns 
even for random arrangements of such columns, then the whole apparatus of  
the generating function technique for translationally invariant, anisotropic 
lattices (3) could be used to obtain these random walk properties for lattices 
with random arrangements of strong columns. 

It is important to note that the two properties that we deal with here are 
obtained from the same generating function. We will evaluate the necessary 
terms of this generating function for two different arrangements of  strong 
columns, namely, for the singly periodic and for the clumped periodic 
arrangements discussed in Section 2. 

The labeling of  sites that we choose to use is shown in Fig. 4. The lattice 
site (i , j)  in the ith row and j th  column is indexed (i - 1)m + j, where 
1 ~< i ~< q and 1 ~ j ~< m; q is the number of rows and m is the number of  
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cq-Tl~ (q-,l~+, (,-,I'~+2 (q-,~'~+3" " ~m 

m+l m+2 m+5 m+4 2m 

Columns >• 

Fig. 4. Labeling of lattice sites. 

co lumns  of  the lattice. F o r  computa t iona l  convenience we impose  per iod ic  
b o u n d a r y  condi t ions  on the rows (i.e., sites in the qth  row are nearest  neighbors  
to those  in the first row) and  reflecting b o u n d a r y  condi t ions  on the columns  
[i.e., a walker  on a site in the first or  ruth co lumn can j u m p  to a neares t  
ne ighbor ing  site in the  same co lumn or  to the neares t  ne ighbor  site in the  
second or  (m - 1)th column].  In  the l imit  q, m -+  o% which we shall take at  
the  end o f  the  calculat ion,  the b o u n d a r y  condi t ions  chosen are  un impor t an t .  

A n  a r rangemen t  o f  connec t ions  is specified by  the set o f  var iables  

{xl ,  x2,. . . ,  xm}, where  

f l i f  i th co lumn is s t rongly connec ted  (4.1) 

x~ = x~+jm = if i th co lumn is weakly  connected  

The  singly pe r iod ic  a r r angemen t  cor responds  to the choices x l  = 1, x2 = 

x8 . . . . .  xk -- 0, xk+l  = 1, x~+2 . . . .  -- x2k = 0,..., X m - ~  = l ,  x m - k + l  = 

. . . .  x m - ~  = O, Xm = 1. In  the mul t ip ly  per iod ic  a r rangement  x l  = x2 . . . .  

X r ~-- 1~ X r +  1 = " "  = Xtcr = O, X k r + l  = " "  = X o c + l ) r  ~--- 1 , . , . ~  X m _  r ~ X r a _ r +  1 

. . . . .  x,~ = 1.2 In  the  l imit  m ~ oe the  densi ty  of  s t rong connec t i ons in  bo th  

o f  these a r rangements  is a. 
As  in A,  we begin wi th  the equa t ion  for the p robab i l i ty  P~( lo l lo )  tha t  

the walker  is a t  site l af ter  n steps, given tha t  she was ini t ial ly a t  10, 

P.(l I I0) = ~ Pu'P~-l(l'll0) (4.2) 
l" 

We choose rn so that m - 1 is a multiple of k in the singly periodic case and so that 
m -- r is a multiple of k r  in the clumped periodic case. 
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where the stepping probabil i t ies 

PH, = 0 

Pt , l •  = (P l  - ext.,_z) 

P~,t• = (P2 + eXz) 

Pz+l,z = (2pl - 2exl) 

p,_~, ,  = (2p~ - 2,xm) 

pz,l• = @2 + ~) 

Pz2, are given by 

if l and l '  are not  nearest  neighbors 

provided l + 1 is not  
in the first or mth  column 

provided l is not  
in the first or ruth column 

if  I is in the first column 

if I is in the mth  column 

if l is in the first or mth  column 

(4.3) 

In matr ix  fo rm we can write (4.2) as 

P~(/o) = TP~-I( /o)  (4.4) 

where the transit ion probabi l i ty  matr ix  T has elements Pz~,. Because of  the 
periodic bounda ry  condit ions in the vertical direction, T is a q x q cyclic 
matr ix  whose elements are m x m matrices U and V: 

v 0 0 . . .  0 

U V 0 .-. 0 0 
T = : : : ..- : : 

0 0 0 ... V U 

0 0 0 ... 0 V 

(4.5) 

The  matr ix  U represents walks within a given row, while V corresponds to 
walks along the columns. The  specific fo rm of  these matrices depends on the 
a r rangement  of  s trong and weak columns,  so that  we will consider each case 
separately later in this section. 

The  generat ing function Gzozo(Z; q, m) for  the walker to return to the 
origin lo is defined by  

G~ozo(Z; q, m) = ~ P.(lo[to)Z" (4.6) 
n = 0  

This generat ing funct ion is for  walks that  begin and end at  the part icular  site 
lo. This initial value prob lem is quite difficult to solve. We shall instead 
pe r fo rm an average over initial positions. Such an averaged generating 
funct ion is not  only simpler to evaluate,  but  indeed corresponds  to the 
physical si tuation in experiments  where the initial posit ion of  the walker can 
be anywhere  in the system. In  any  case one expects the asymptot ic  behavior  
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of the walk to be independent of the particular initial site used. Averaging 
(4.6) over the uniform distribution Po(lo) = l /N ,  where N = qm, yields 

G(z; q, m) = ( l /N)  ~ G~ozo(z; q, m) 
lo 

f~=0 tO 

= (I /N) ~ [(IN -- zT)-l]~oZo provided Iz[ < 1 
lo 

= ( l /N)Tr(IN -- zT) -1 

= (1/Nz)(d/dz -1) Tr log(z-qn  - T) 

= (w/N)(d/dw) log det(wIN - T) (4.7) 

where w = z-  x and where IN is the N x N identity matrix. This generating 
function can therefore be expressed in terms of a determinant, a representa- 
tion which we will find particularly well suited for a variety of applications. 
This representation is similar to the one for the lattice Green's function in 
studies of vibrations of harmonic lattices. (s) 

The cyclic nature of T allows one to reduce the order of the determinant 
in (4.7). Szeg6's theorem for Toeplitz determinants (9) gives 

f? lira(l/q) log det(wIqm - T) = br  log det [wire -X(O)] d@ 
q--*~ 

where 
X(O) = U + 2V cos 0 (4.8) 

Using (4.7) and (4.8), we obtain 

1 d f ~  lim G ( z ; q , m )  - G ( z ; m )  = ~-~-~w-~w logde tDm(w,  |174 (4.9) 

where D m is 
Din(w, | ; {xi}) ---- wI~ - k(| (4.10) 

The matrices U and V whose elements are the transition probabilities 

(Pl - Ex2) 
0 @1 - ~x3) 

(Pl - ~x2) 0 

are given by 

(Pl -- EXs) 

(Pl - ~Xm- O 
0 

(Pl - EXm-O 

0 
2(pl -- eXl) 

U =  

2(pl - EXm) 
0 

(4.11a) 
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L P 2 4 1  P2 + Ex2 
V ~ " . . 

P2 + EXm-1 

From Eqs. (4.8), (4.10), and (4.11), we obtain 

w -  2(p2 + EX1)C 
1 - 2(p2 + Exl) 

det Dm= 

- ( p l  - ~ x 2 )  

w -  2(p2 + ex2)c 
- ( p ~ -  ~ x ~ )  

where c - cos @. 

(4.11b) 

- @ l - ~ x m - 1 )  

- 2(pl - exm) 
w -  2(p2 + EXm)C 

(4.12) 

Any further reduction of det Dm and hence of G(z; m) depends on the 
specific form of  X(O), i.e., on the distribution of strong and weak columns. 
In what follows, we discuss the singly and clumped periodic distribution of 
strong columns separately. 

4.1. S ingly  Per iodic D is t r ibut ion  of  S t rong  Columns 

As mentioned earlier, the singly periodic distribution of strong columns 
corresponds to the choice xl = 1, x2 . . . . .  xk = 0, xk+l = 1,..., Xm-k+l = 
.. . .  Xm-1 = 0, Xm = 1. With this choice, det D m c a n  be evaluated by a 
straightforward but tedious method detailed in Appendix C. Using (4.9), we 
show in Appendix C that 

G(z) =-- lira G(z; m) = q)(z) - LF(z) ln(1 -- z) (4.13) 

where ~F(z) and C)(z) are regular functions of z at z = 1. The function T(z) 
is given by 

1 fp~[p2 + e~/2(pl - e)]'~ -z/2 
L F ( z ) = ~ /  ~ - ~ e / ~ z - - - ~ ) ] ~  J [1 + O(1 - z ) ]  (4.14) 

The probability P2, of return to the origin in 2n steps (note that it is 
impossible to return to the origin in an odd number of steps) averaged over 
initial sites is the coefficient o fz  2" in an expansion oPF(z) ln(1 - z) in powers 
of  z. Using Darboux's theorem (5) and treating the logarithmic singularity as 
the limiting case of an algebraic one, we obtain 

1 ~ ( 1 ) +  O(nl--~) (4.15) P ~ .  ~ 
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where ~F(1) is given by Eq. (4.14) evaluated at z = 1. We note that when 
P2 = 0, Pl = �89 and E = �88 ~F(1) reduces to the result in (4.9) of A. We also 
show there that the asymptotic formula P2, ~ ~F(1)/2n is remarkably accurate 
even for small n when k is small, i.e., the asymptotic result is valid once the 
walker has sampled the structure of the lattice. 

The asymptotic probability of return to the origin in 2n steps in an 
anisotropic, translationally invariant lattice with transition probabilities Pl'  
and P2' in the x and y directions is (3~ 

P2~ "~ 2n 4=(p~'p~') ~12 + -~ (4.16) 

If  we use Eqs. (3.11a) and (3.11b) for the relations between the stepping 
probabilities p{ for an  anisotropic, translationally invariant lattice and the 
p~ for our lattice, then Eq. (4.15) becomes identical with (4.16). This is an 
important result, since we have now been able to make the same identification 
for such different properties as the components of the mean square displace- 
ment and the probability of return to the origin. Since we found in Section 3 
that the components of the mean square displacement are independent of the 
arrangement of strong columns, the above result strengthens the conjecture 
made in B that the leading term in (4.15) is also independent of the arrange- 
ment of strong columns and is completely determined by their density. 

The average number S. of distinct sites visited in an n-step walk has the 
generating function (a~ 

R(z) = 2 S~z~ (4.17) 
3 = 0  

which is simply related to G(z) of Eq. (4.13) by 

R(z) = [(1 - z)2G(z)]-i (4.18) 

For small values of n and k, Eq. (4.18) can be used in conjunction with Eq. 
(4.13) to find exact values of S~. The generating function R(z) is regular 
inside the unit circle and has branch point singularities at z - + 1. Expansions 
about these singularities are analogous to that given in Eq. (4.13). Asymptotic 
expansions for S~ can be obtained from Darboux's theorem; the leading order 
term in this expansion can alternatively be derived from the Hardy-Little- 
wood-Karamata Tauberian theorem. Following the prescription set out by 
Montroll and Weiss, (~ we find 

S,  ~ 4rr(pl'p2')~/2n/ln n (4.19) 

with Pl' and P2' given in (3.4). Once again we can thus make the same 
identification made earlier between the singly periodic and the translationally 
invariant anisotropic lattices. 
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4.2. Clumped Periodic Distr ibut ion of Strong Columns 

In Appendix C we present in detail the calculation of the generating 
function G(z) for the clumped periodic lattice. The main difference between 
this calculation and the one for the singly periodic case lies in the more 
complicated determinant det Dm that occurs in the former. In Appendix C 
we carry out the detailed evaluation of the generating function only for the 
case Pl = �89 P2 = 0, and E = �88 We find that in this case G(z) is given by 
Eq. (4.13) with (4.14), i.e., we have proved that for this choice of  p i ,  P2, and E 
the properties P2, and S, for the clumped periodic lattice are identical to 
those of  the singly periodic lattice with the same density o f  strong columns. 
The more general case of  arbitrary p~, P2, and e can be dealt with in an 
analogous manner. 

5. O C C U P A T I O N  T H E O R E M  

We conclude this paper by presenting an argument based on the theory 
of Markov chains that helps to explain the independence of the mean square 
displacement of  the random walker on the details of  the arrangement of  
strong and weak columns. This argument also provides a basis for the con- 
jecture made in B that the other random walk properties that we have 
considered are also independent of  the detailed arrangement for random as 
well as periodic arrangements for a given density ~. 

Consider the defining equation (3.2) in the asymptotic (n--+ oe) limit. 
In this limit P,(lllo) becomes independent of  n, so that we write 

e( l l to)  = a(z, l ')P(l 'lZo) (5.1) 
l '  

where P(I I/o) is the conditional probability of  being at site l in the limit n -+ 0o. 
I t  is a straightforward matter to show that Eq. (5.1) is satisfied for any possible 
arrangement of  columns by making the reasonable assumption that P(lIlo ) 
can only take on two values, depending on whether site l lies on a strong or 
weak vertical column. Let P(l]lo) = A when l lies on a strong column and let 
P(lllo) = B when l lies on a weak column. I f  site l lies on a strong column, 
then, depending on the arrangement of  columns, one of  the four situations 
depicted in Fig. 5 results. We use the stepping probabilities shown in Fig. 1, 
i.e., from a lattice point lying on a weak column the walker can step with 
probability Pl to either nearest neighbor in the horizontal direction and with 
probability p~ to each vertical neighbor, with 2pl + 2pz = 1. From a lattice 
point lying on a strong column, the nearest neighbor transition probabilities 
are p l  - e and P2 + E in the horizontal and vertical directions, respectively. 
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Q b 

_! 
-! 

c d 

Fig. 5. Possible arrangements of columns around a lattice point l on a strong column. 
Site l is indicated by a circle and its nearest neighbors are indicated by a x. 

Equat ion  (5.1) then reduces to the identity A = A for  Fig. 5a and to the 
relat ion 

A - Pl  B (5.2) 
P l  - -  E 

for  Figs. 5b-5d.  Relat ion (5.2) is in fact just  the detailed balance condit ion 
for  the r a n d o m  walk on the rows. I f  lattice site l lies on a weak column,  then 
again four  configurations are possible. One of  these yields the identity B = B 
and the other  three yield (5.2). No te  that  A > B if E > 0, i.e., sites on strong 
columns have a higher asymptot ic  probabi l i ty  of  occupat ion than  those on 
weak columns.  To  obtain explicit values for  A and B we use the normal iza t ion 
condi t ion 

N A  + N ( k  - 1)B = 1 (5.3) 

where N k  is the total  number  of  lattice sites. Equat ions  (5.2) and (5.3) give 

A = 1 ap~ (5.4) 
N p l  - ~ + aE 

and 

B 1 ~ ( p l - , )  (5.5) 
N Pl - e + ae 

These results correspond precisely to those obtained in Eq. (A25) of  Appendix  
A. Thus we have proved  that  the asymptot ic  probabi l i ty  of  occupat ion of  a 
site for  a given density of  s trong columns depends only on whether  that  site 
is on a s t rong or weak co lumn and not  on the nature o f  the arrangement  o f  

the columns. This is a crucial result that  was used in Section 3 [cf. Eqs. (A21)-  
(A26)] to prove  the independence of  the mean  square displacement f rom the 
a r rangement  of  columns.  
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It should be noted that  the results (5.4) and (5.5) for  the occupancy 
probabilities of  sites on strong and weak columns are in complete agreement  
with the results obtained in B for the corresponding probabilities P(i) and 
Pin). I f  we set Pl  = �89 and E = �88 then Eqs. (5.4) and (5.5) reduce to Eqs. 
(36) and (37) of  B. The results presented in this paper on occupation probabilities 
thus validate the conjecture (4) of B on the relation between the ratio of  steps 
along the rows and columns to the ratio of  the number  of  bonds (in irreducible 
lattice fragments) along the rows and columns. 

The results of  this paper on the mean square displacements and on 
occupation probabilities could, with sufficient tedious analysis, be extended 
to the three-dimensional lattices considered in B. 

A P P E N D I X  A 

The equation that  describes a r andom walker on a periodically disordered 
lattice is 

P,(I, 717o) = ~ p,,,(1 - I')P,_z(I', 7'17o) (11)  
y ' = l  l ' = - - c o  

Here Pn(/, ylTo) is the probabil i ty that  the walker is at the yth site (y = 
1, 2 .... , k) of  the lth unit cell ( - o o  < l < oo) after n steps, having started at 
site yo of  the zcroth unit cell, and py%'.(l - l') is the probabil i ty of  stepping 
from site 7' in unit cell l' to site y in unit  cell l in one step. We wish to 
evaluate 

<x, 2> = ~ [lk + O" - 7o)]2P~( l, 7[70) (12)  
%'=1 l =-co 

(J) In terms of  the partial moments  B%'ro(n), where 

B~)o(n) = ~ PP,~(I, 717o) (A3) 
l=-ce 

we have 
k /c /c 

(x~2> = k 2 ~ B~)o(n) + 2k ~ (Y - Yo)B~(~)o(n) + ~ (Y - 7o)2B~~ (14)  
%'=1 y=l y=l 

It is also convenient  to define the single-step partial moments  ..~,,*vJ) �9 

A("= ~ l'p,,,(l) (AS) y%" 
l ~ - - c o  

On multiply Eq. (A1) by l j [expressing l as (l - l ')  + l '] and summing over 
l by changing summations over I and l '  on the right-hand side to sums over 
l '  and 1 - l ' ,  we find a set of  difference equations:  

B(~ = A(~176 - 1) 

B(1)(n) = A(1)B(~ - 1) + A(~ - l) (A6) 

B<2)(n) = A<2)B(~ - l) + 2A(1)B(1)(n - l) + A(~ - 1) 
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where B(J)(n) = (B(~),(n)), A (J) = (A~),). Because of  the sum rule 

E p, , . ( /)  = 1 (17)  
Y = I  | = -  m 

A (~ is a stochastic matr ix  with co lumn sums = 1. Also, since Po(~', l ifo) = 
~o8~o, we have B(~ = I, B(1)(0) = B(2)(0) = 0. To  proceed, generating 
functions are in t roduced:  

X(z) = ~ <xn2>z '~ (A8) 
r t = 0  

and 
oo 

G(J)(z) = E B(J)(n)z~ (A9) 
n = O  

F r o m  Eq. (A4) we have 

/c k /r 

X ( z )  = k 2 ~ ,  (~ ~ (o~ G~yo(Z ) + 2k E (~ - ~'~ (z) + E (y - Yo) GyTo(z) (AIO) 
? = 1  ? = 1  y = l  

On mult iplying Eq. (16)  by z ~, summing  over n f rom 0 to oo, and solving 
successively for  G(~ G(1)(z), and  G(2)(z), we find 

G(~ = [I - zA(~ 

C(1)(z) = zG(~176 (A11) 

G(2)(z) = zG(~176 + 2z2G(~176176 

Without  loss of  generality, k can be chosen to be odd and  unit  cells taken 
with defect sites at  the middle of  the cells [7, = (k + 1)/2]. 

U p  to this point  the calculation has proceeded identically as in A, and  
has been reproduced here for  the sake of  completeness.  The  matrices A (j) tha t  
we consider here are generalizations of  those in A and are given by 

"2p2 
Pl 

0 

A (~ = 0 

0 

0 

Pl 

P l  

2p2 

0 

0 
0 

0 
0 

2p2 Pl - ~ 0 

Pl 2p2 + 2E Pl 
0 Pl - ~ 2p2 

(k + 1)/2 

0 P l -  
0 0 

2P2 Pl 
Pl 2pz 

-~ (k + 1)/2 

(A12a) 
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A <l> = ; A <2> = (A12b) 

P~ 

Substi tut ing (A12) in (A11) and  (A11) in (A10), we obtain 

k2zPz (c:<o~ Gi~ + 2zp l (G~  G~~ X ( z )  = - ? + 

1c k 

7=I y=l 

In deriving this equat ion we have used the results G<~ ~ -- G<~ ~ and ~<o~ ~(o~ ~]C ~ ~ii" 

These are special cases of  the relat ionship c;<o> = ~(o> which ~7y 0 "Jk+ 1 - 7,k + i - YO 

follows from the symmetry of the walk: 

P.(4 7[70) = P ~ ( - I ,  k + 1 - vlk + 1 - Vo) (A14) 

G<~ can be interpreted as the generat ing function for r a n d o m  walks on a 
k-ring, the transit ion probabi l i ty  matr ix  of  the walk being A (~ N o w  we make  
the decomposi t ion  

A ~~ = A ~~ + A (A15) 
where 

p01 2p2 Pl A <~ = " (A 16a) 
0 0 2p2 Pl [ 

J 0 0 Pl  2p2 

[O O] A = 2e <--- (k + I)/2 (A16b) 
- - E "  

t 
(k + 1)/2 

A <~ is the transit ion probabi l i ty  matr ix  for  walks on the perfect k-ring;  A 
is a defect matr ix  with only three nonzero elements. I t  is a simple exercise 
to derive an expression for  G<~ in terms of  the Green ' s  function Un(z), 
where (4~ 

UR(z) = [I - zA (~ (A17) 

UR(z) is the generating function for  walks on a perfect  k-r ing with matr ix  
elements given by 

1 Ix ly-~'I + x k-I~-~'l] 
U#y,(z) = [(1 - 2zp2) z - (2zpl)2] ~/2 [ ] .~ ~-~ j (A18) 
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where 

1 - 2zp2 - [(1 - 2zp2) 2 - (2zp~)2] ~2 
x = 2zp l  (A 19) 

The  generating funct ion G(~ for  the defective lattice can be determined 
f rom the perfect lattice generat ing funct ion UR(z) using the defect tech- 
nique. (4~ The  result is 

= e~G (~ r2UR -- U R - U~(k-l) /2] (A20a) C~T(O) UCr, "{- 'r ( k + l ) / 2 , y ' l  r , ( k + l ) / 2  r , (k+S)/2  

where 

U R 
~(o) _ (k + 1)/2, y' (A20b) 

- - U ~ . . ~ . + O  

Since A ~~ is stochastic, it has a nondegenerate  m a x i m u m  eigenvalue of  
unity and  it follows f rom Eq. (A1) tha t  G~~ is a regular function of  z 
except for a finite number  o f  poles, the closest to the origin being a simple one 
at  z = 1. I t  then follows f rom Eq. (A13) and Darboux ' s  theorem that  

<x.2> ~ Cn + D as n - +  oo (A21) 

where C is the coefficient of  1/(1 - z) 2 in X(z), while D is equal to C plus 
the coefficient o f  1/(1 - z) in X(z ) .  Thus  

C = k2p~ l im [(1 - z)(GL~162 + G~~ + lim 2p~(G~, ~ - G~~ 

k 

+ 2kp~ ~ ,  (V - :r - z)G~ ~ lira[(1 - z)Gk~o](~ 
7= I 2-+1 Z--~l 

- lira[(1 - z)G~~ lim[(1 - z)G~~ } (A22) 

In  order  to evaluate this expression, we use the following expansions:  

- z),2 _ z)]} -1 U ~ ( z )  ~ {k(1 - z ) [ l  + (I p~/2 (I - 2pi -I) + 0 ( I  

a n d  

v~+ , ( z )  _ 1 + 
v~,(z) 

f rom which we find 

1 - - Z  w:---_ ~ ( ~ -  k) + O(1 - z )  2 

lim[(1 - z )U~y+, ( z ) ]  = 1 /k  
2.'-- '1 

lira [ U ~ 7 + n ( z )  - -  Uff~(z)] = - ~ ( k  - ~ ) / 2 k p l  

(A23a) 

(A23b) 

(A24a) 

(A24b) 
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Then from Eq. (A20) 

lira(G(?) _ ,,~,c(~ = l im(U~ - U ~ )  = - ( k  - 1)/2kp~ 
Z--*I Z-~I 

lira[(1 - z)G~~ 1 pz - , 
~ 1  = k P l -  E + aE 

lirn [(1 - z ] G  (~ l pz 

Finally, on substituting Eqs. (A24) and (A25) into Eq. (A22), we find 

C =  2p~ 1 + a~/(pl - ~) (A26) 

which yields Eq. (3.9a). Equation (3.9b) then follows directly from (3.1). 

(A25a) 

k + l  
provided 7 r ~ (A25b) 

(A25c) 

A P P E N D I X  B 

To evaluate the matrix elements G~j~o(z ) occurring in Eq. (3.23) we 
consider a finite ring of N k  sites with N strong partial traps distributed 
randomly among N ( k  - 1) weak partial traps. The density of strong partial 
traps is thus 1/k independent of  the number of lattice sites in the ring. At the 
end of  the calculation we will take the limit N -+ ~ .  We consider the equation 

N k  Nh: 

g,,o(Z) = U,~o(Z) + z ~ ~ U,~,(z)q(l', l")g,,%(z) (B1) 
/'=1 l"=1 

where q(l, l ' )  is defined in Eq. (3.13b) and U~o(Z ) is the perfect Nk-ring 
generating function [cE Eq. (A17) with k everywhere replaced by Nk].  Equa- 
tion (B1) defines the matrix g(z) and in the limit N---> ~ we have 

lim gzzo(Z) = Guo(Z) (B2) 
N ~  

Now consider Eq. (B1) at the strong partial trap sites {lj}, Successively setting 
l equal to the lj yields the following set of N simultaneous algebraic equations 
in the N unknowns g~j~o(Z): 

Allzlg~lzo + Allt2gz2zo + "'" + AliINgINlo = U~o 

Az2~lgzllo + Al2zzgta~o + "'" + Az2z~gluzo = U ~  o 

where 
AtN~ig~llo + AtNl2gl2IO + "'" + Az.~z,gt,,Zo = U, Nton 

At,l, = 1 -- 2z~(U0 R - U1 ~) 

Az,l, =---- E(2U~tj R _ U R - -  Ul~,ty,lt +x  l~,l]_l)~ 

R U J  - U#, U1" = U . ,~ l  

i r  

(B3) 

(B4a) 

(B4b) 

(B4c) 
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Equat ion  (B3) can be solved by the method  of  determinants.  For  example,  
consider the solution for  gzlzo : 

"'" Az~Iu I x ' ' (B5) 

�9 "" AiNz~ t Al~zl A:~,~, 

gh~o = Ul~to Az~t2 

R U~v~o Aluz2 

I t  is convenient  for the following calculations to divide each element in (B5) 
by Uo R and thus to rewrite gz~zo in the fo rm 

gzl~o = [ N u m l / I D e n l  

I N u m l -  

t U[~o A ~  
t 

�9 .. A ' ~  

�9 . .  A',~ I 
t 

A l v I N  

where 

and where 

(B6) 

U[ffto A~N~2 

A~lzl ... 

]Den] = : 

A~Nzl ... A~N,N 

(B7a) 

(B7b) 

Utl~ R R Z~Zo = Uz~lo/Uo (B8a) 

A'~,~, = A~,z,/Uo ~ (B8b) 

As discussed in the text and in Appendix  A, for our purposes  it is 
sufficient to evaluate the gz,~j tu O(1 - z ) -  1 when we consider an expansion 
in powers  of  (1 - z). F r o m  Eq. (A22b) we have 

where 

Hence  

U'~, = 1 I z ( N k  - l 0 ~,o 2pl A + O(A 2) (B9) 

A - (1 - z )  ( t o O )  

' ( - ~ )  ~ - - z A + O ( A 2 ) = a A + O ( A 2 )  A~,~ = A N k  1 - ez + Pl (B l l a )  

, cZ 
Az{~j = - -  A + O(A 2) - bA + O(A2), i # j  ( B l l b )  

Pl  
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Using (B9) and (B1 l) in (B7), we obtain 

1 b b b 

1 a b b 

INure] = 1 b a b 

1 b b b 

. . .  

. ~  

. , ~  

b 

b 

b A N- 1 + O(A N) 

a 

= (a  - b ) N - ~ A  N-~  + O ( A N )  

For the denominator of (B6) as given in (B7b) we obtain 

]Den[ = a b ... A N + O(AN+I) 

b b ... 

(B12) 

= (a  - b ) N - l [ a  + ( N  - 1)b]A N + O(A N+I) (BI3) 

Therefore, substituting (Bl2) and (B13) into (B6), we obtain 

gzl~o = N k  1 - ~  + NEz  A-1 + O(A 0) (B14) 
PlJ 

where we have used the definitions of a and b given in (B11). 
To construct the sum of generating functions that occurs on the right- 

hand side of Eq. (3.23), we note that the leading term in (B 14) is independent 
of l~. Hence we have 

g0Zo = Ngzllo 
1 t  

and using Eq. (B2), we obtain 

Gzjzo = lim Ngzlto = k 1 - ez  + P l J  
lj  N - +  m 

which is the result given in Eq. (3.24). 

A P P E N D I X  C 

C1. S ingly  Per iodic D is t r ibut ion  of  S t rong Columns 

Expansion of the determinant of  Dm given in Eq. (4.12) about its bottom 
row leads to the recurrence relation 

det D m = [ w  - -  2(p2 + e)c] det Em-1 - -  [pl(2pl - 2e)] det Era_ 2 (C1) 
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where det Era-1 and det Em-2 are determinants obtained by deleting one and 
two rows and columns from Din, respectively. As mentioned in Section 4, 
(m - 1) is a multiple r ofk .  Let E ~-jl be the determinant obtained by deleting r - j  2 

kj2  + j l  rows and columns from Era-l ,  where 0 ~< j~ ~< k - 1 and 0 ~< 
j2 ~< r - 1. Thus, e.g., det Em-~ = E~ k. Because det Em_~ is a continuant, it is 
possible to develop a recurrence relation between E]~ and E]~ ~ 1. Using this 
recurrence relation, it can be shown (~) that E/sat isf ies  a second-order linear 
difference equation with the solution 

E /  = Ajhl ~ § Bjh2 ~ (C2) 

where ;~1,2 are the roots of  the quadratic equation P~(~) = 0 and 

P~(a) = 

1 - ( w -  2p~c) p ~  0 
0 1 - ( w - 2 p 2 c )  p l  2 

pl  (pl  - E) 

- (w - 2p2c - 2~c) p l (p l  - ~) 

o 

1 - ( w - 2 p 2 c )  p l  2 

0 a - ~ ( w -  2p2c) 
0 0 

(c3) 

polynomials (Ref. 10, p. 183) Uk(h) defined by 

2h 1 0 0 

1 2 h  1 0 

0 1 2h 1 
U ~ ( ; ~ ) -  : : : : : 

0 

0 

it can be shown that 

where 

and 

0 

0 

0 

1 2,~ 1 

0 1 2,~ 

P ~ ( A )  = t 2 - X ~ ( w ,  c)h + p { ~ - 2 ( p l  - E) 2 = 0 

X ~ ( w ,  c) = p l ~ U k  + (2Ep~ -1 - p ~ ) U k - 2  - 2 e c p ~ - * U k - ~  

/ 
- w 

2pl ) \ 

(C4) 

( c 5 )  

(C6) 

(c7) 

The coefficients Aj and Bj can be found from det E1 and det E2, but we will 
not need to know their values for our calculation, as will become clear below. 
By systematic expansion of the determinant (C3) and use of  the Chebyshev 
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The two roots of Eq. (C5) are given by 

~1,2 = �89 c) ++_ �89 c) - 4p~k-2(pl  - e)2]1/2 (C8) 

Hence from Eqs. (C1), (C2), and (C8) we obtain 

det Dr. = [w - 2@2 + ,)c](AkAl' + B~A2 ~) - [2(pi - e)pl](Ak-~A~ r + B~-IA2") 

= {A~[w - 2(p2 + e)c] - A~-l[2(pI - e)pI]}~l r 

+ O[[h2r '~]  ' \ t l  ] A~ > A2 (C9) 

In the limit rn --+ ~ ,  i.e., r ---> oo, 

(log det Dm)/m --+ log '~1 (C10) 

Taking the limit m -+ ~ of (A9) and using (C10). we obtain the result 

G(z) =- lim G(z; m)  
m ~  oo 

w ~o ~X~/~w 
= k--'~ [Xk2 _ 4plk_2(pl  _ e)211/~ dO 

Wfo fo=OX  d| = k--~ Ow X~ - 2p~-l(p I - , )cos  (9' 

w f f  fo ~ fo | 0Xk e x p { - t [ X ~ -  2p~-~(pl  - , ) c o s  0']} dO dO'  dt = ~---g -~w  

(Cl l )  

with Yk =- Xk(w, c) of Eq. (C6). Using the following integral representation 
of the Bessel function I j (x)  of imaginary argument (Ref. I0, p. 14) 

I~(x) = ~'-1 fo ~ cos(j@) e x oo~ o dO (C12) 

we obtain 

G(z) = ~ e - 'XeIo(2 tp~- l (p l  - e)) dt d|  (C13) 

The @1 integral is evaluated by Laplace's m~ method. Thus (C13) reduces to 

G(z) = ~ _ _  ~ o~ =o[2t(e2Xk]-~--O12) e~=o] 

x [exp(-- tXk[o~=o)]Io(2tp~-l(pl  -- E)) dt (C14) 
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It can easily be shown by using the relations between the derivatives of 
Chebyshev polynomials (Ref. 10, p. 183) and (C6) that 

Xk[ol=o = PlkU~(w ') + P~-I(  2e - pl)U~_2(w') - 2Ep~-IUk-I(W ') (C15a) 

~2 X~ " U' "w'" = - PO ~-2t ) o1=o P2P~-zUk'(w') + p2p~-2(2e 

~ : - 2  t t + 2 ,p~- lUk_l (w  ') - 2Ep~ 'p2U[~_~(w) (C15b) 

~X~ %=o 1 - - Pl )Us - 2ep~-lUs Ow 2pl [P~kU~'(w') + (2eP~-i k , 

(C15c) 
where w' = (w - 2p2)/2pl and U~'(x) - (d/dx)U~(x). 

We now proceed to examine the singularities of G(z) with respect to z. 
The integral in (C14) can be split into two parts as follows: 

G(z) = t) dt + f ( t )  dt (C16) 

Here f ( t )  denotes the integrand in (C14) and T is an arbitrarily large but 
finite positive number. The first integral is an analytic function of z = w-1. 
The second integral diverges at z = 1 and gives the logarithmic divergence 
often encountered in two-dimensional lattice problems. To show this, we 
substitute in the second integral in (C16) the following asymptotic expansion 
for the Bessel functions Ij(x) (Ref. 10, p. 86): 

Ij(x) = (2~rx)-l/2eX[1 - (4j 2 - 1)/8x + O(1/x~)] (C17) 

This yields 

f f  { f f  e x p [ 2 t p [ - l ( P l - e ) - t X ~ l ~ 1 7 6  6(z)  = f ( t )  dt + S(k,  p~, e) t 

[ , 
x 1 + 16tp~_~(pl _ E) + 0 dt (C18) 

where 

w [ - 2  O2X~ ] - l i2 [p~_l (p l_  e)]_l/2 OXk % (C19) S(k,  p l ,  E) 

Inserting the explicit expression for Xk]ol = o from (C6) gives 

a(z)  = f ( t )  dt + S(k,  Pl ,  e) 

{ f ~ e - r C [  1 ( ~ ) l  } x "--7- 1 + 8tp~_l(pz _ ~) + 0 dt (C20) 
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where 

C = (t/T){~pk-2[pl(2k + 1) - 2ek](1 - z)} (C21) 

We define the first integral in (C20) as gO(z), which is a regular function o f  z 
at z = 1 as pointed out earlier. Defining the functions 

era(x) - t -me-xt  dt (C22) 

we then have 

[ 8P~-I(Pll _ ~) 1 G(z) = gO(z) + S(k, p i ,  e) r + c}2(rc ) + ...[ (C23) 

The  functions era(x) are simply related to the incomplete  g a m m a  func- 
tions. They have a branch point  singularity at x = 0 and it can be shown that  

( - -  1)iX j ( - - l ) m - l x  m - 1  ( - - l )  m 

~m(X) = - -  j !  ( j  + 1 -- m)'  + (m -- 1)! + (m -- 1)---------~ Xm-Z log X 
j=0 

j C m - 1  

(c24) 
Thus  

~b~(TC) ~ - l o g ( T C )  ~ - log(1 - z) (C25a) 
and 

4~(TC) ~ -(rc)m-llogTC ~ - ( 1  - z)m-~ log(1 - z) (C25b) 

As z--~ 1, the dominan t  contr ibut ion therefore  results f rom ~ ( T C )  and is 
equal to - l o g ( 1  - z). 

We now evaluate S(k,p~,  e) in powers  of  (1 - z ) .  Expanding the 
derivatives of  the Chebyshev polynomials  in (C15) in powers  of  (1 - z), 
we obtain 

ex~ 
~w o1=o = kP~-2[k(Pz - ~) + e] + O(1 - z) (C26a) 

oi=o = 2kp~ -2 + kpz(E - - p l )  + ~ + 0(1 - z) (C26b) 

Substituting (C26) in (C19) gives 

S(k ,p ,  e) = 1 f p~[p~ + ae/2(pl - -  E) ] ~ l 1 / ~ 4,r \ ~ q- 7~/-~ ~ ~)]~ J + O(1 - z) (C27) 

Combin ing  Eqs. (C23), (C25), and (C27), we obtain the result quoted in 
Eqs. (4.13) and (4.14). 

C2. C l u m p e d  Per iod ic  D i s t r i b u t i o n  of  S t r o n g  C o l u m n s  

As ment ioned in the text, the c lumped periodic distribution o f  strong 
co lumns corresponds to the choices x l  = x2 . . . . .  xr = 1, xr+l . . . . .  

Xkr = O, X k r + l  . . . . .  X ( k + l ) r  ~ 1 , . . . ,  X m _  r = X m _ r +  1 . . . . .  X m = 1. Sub- 
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stituting these values into Eq. (4.12), it is possible to evaluate the generating 
funct ion G(z) explicitly for arbi t rary  values of  p~, P2, and e. Fo r  algebraic 
simplicity we only consider the case p ,  = �89 p~ = 0, and e = 1. Proceeding 
as in the singly periodic case, we find that  the polynomial  Pk(A) of  Eq. (C3) 
is here replaced by 

Pk, (A)  = 

r (k -  D 

1 - w  ~ �9 �9 

0 1 - w  �88 �9 

�9 . �88 

1 - w  ~- 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

�9 �9 1 , - - ( w - � 8 9  T g  

- ( w -  �89 ~ . 

- ( w  - � 8 9  

1 - ( w - � 8 9  
0 a - ( w - ~ c ) a  

0 0 A 

r ( k  - 1)  - 1 

(c28) 

Proceeding as before,  we obtain  

w _f~ ~ (~X~,/~w) d@~ 
G(z) = lira ~ -o  [ x~  -- 4 - 7 ~ T ~ ]  ~'~ 

which can be t r ans formed  into 

G(z) = ~lim krlrjo~ fo~ Jo f~ e-tX~'~ ~Xkr(W)aw Io (~2 t  ) dO1 

Pk~(A) = A 2 -- AXk~(w) + 2 -2(~+1)~ = 0 (C29) 

1 {[Ur~-r(w)Ur-2(2w - c) - Urk-~-l(w)Ur-a(2w - c)] 
2(~ + l)r 

+ 2(2W -- c)[U~k-~-I(w)U~-2(2w - c) - U~_~_2(w)U~-3(2w - c)] 

- [ u r ~ _ ~ _ l ( w ) U ~ _ 3 ( 2 w  - c )  - u r ~ _ T _ ~ ( w ) U ~ _ ~ ( 2 w  - c)] 

- 4(2w - c) 2 [ UT~_ r(w) U~_ 2(2w - c) - U,~_r - l(w) fr  - 3(2w - c)] 

+ 2(2w - c ) [ U r ~ _ r ( w ) U r _ z ( 2 w  - c )  - U~_r_l(w)U~_4(2w - c)]} 

(c30) 

(C31) 

dt (C32) 

where  

X~r(W) 

Using Eq. (C4) and  certain propert ies  of  continuants ,  (12~ one can show tha t  
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Once again we can use the Laplace method to evaluate the @1 integration, 
with the result 

G ( z ) = l i m  w OX~ [ ,r ]1/2 
~ kr~r aw %=0 2 a~X~/~012 %=oj 

| e-tXk, (w, [ 2t 
X f o  ~ t  I o ~ ]  dt (C33) 

The integral in (C33) can be split into two parts, in a manner  similar to Eq. 
(C16). The first par t  is a finite integral o f  the integrand in (C33) f rom zero to 
a large but finite value T of  the variable t. This part  is an analytic function o f  
z as  z ~ 1 and will be denoted by O(z). The second part  is an integral f rom 
T t o  infinity of  the integrand. Proceeding as in Eqs. (C17)-(C25), it is straight- 
forward to show that  the second part  has a logari thmic singularity as z --+ 1. 
Thus we write 

G(z) = O(z) - tF(z)ln(1 - z) (C34) 
where 

tF(z) = lim w ~Xkr ol [2a_(~+l)k ~2Xk r ]-1/2 
~o~krTr ew =o ~ 0 2  ~176 j (C35) 

The explicit forms for the derivatives o f  Xk~ occurring in (C35) are 

~2 X~" ol kr ~ ~O12 =o - 2 ~k+~-z + O(1 - z) (C36a) 

~Xk~ % 2k(k + 1)r 2 
Ow =o - 2 ~ + : - ~  + O(1 - z) (C36b) 

Combining Eqs. (C35) and (C36), we obtain 

l k + l  
tF(z) = 2rr V ~  [1 + O(1 - z)] (C37) 

which is identical to the result (4.14) if we setpz = �89 P2 = 0, and e = �88 
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